Why does a fish cross the road? (Where biology and infrastructure meet.)

Mark Fedora, Hydrologist

© Harley Soltes (The Seattle Times), photo credit.

Why would a fish want to cross the road?

Spawning migration Seek cold water Seek deep water Seek food Seek shelter Differing habitat requirements for different life stages

What could prevent a fish from moving?

- Dams
- Diversions
- Pollution
- Habitat degradation
- Roads

What did the fish say when it hit the wall?

DAM.

Leap barrier

Depth barrier

Velocity barrier

Exhaustion barrier

Behavioral barrier

Why does it matter?

Species differ in their ability to move against stream currents

How bad is it?

1756 potential barriers! (Plus 84 dams.)

ЬŠ

Mapping unmapped roads

How many crossings are "bad"?

We surveyed 205 sites in the Pine and Popple watersheds, WI

Road Crossings in the Pine-Popple Watershed

- No passage problem
- Barrier at high flows
- Barrier for some species or life stages
- Barrier for most species at most flows
- Crossing present but not surveyed

What kinds of crossings are barriers?

Why are crossings barriers?

Implications for the Menominee

Assume a 66% failure rate for the basin
Add in dams
(0.66*1756)+84 = <u>1243 barriers</u>

Habitat fragmentation? Species viability?

Conclusions

 Culverts are generally not very fish friendly
Long term viability of our native fish is threatened by habitat fragmentation

Prioritizing crossing replacement

- Quantity of habitat
- Quality of habitat
- Diversity of habitat
- Endangered/rare species
- Game species
- Invasive species
- > Water quality

- Condition of structure
- Risk of failure
- Consequences of failure
- Cost
- Opportunity

Fishwerks!

https://greatlakesconnectivity.org

Fishw	/ERKS	FWS		UW Lim	nology
Find b	parriers of int	terest			2 0
ilter barriers 🕘 🛛 Features r	natched: 382			Reset fil	ter 😏
emoval cost per barrier	r			FI	iter
assability rating				FI	lter
Jpstream habitat				Fil	ter
County				FI	ter
Vatershed				Ren	nove
Deactivate select	tion tool Cle	ear selection			
State / Drowloce				E	har
State / Province					
Great Lake basin				FI	ter
Nation				FI	lter
Barrier type				Fil	iter
First barrier to sea lamp	rey			Fi	lter
Barrier ID				Fi	iter
Optin	nize barrier r	emovals			?
Transform name	Operation	Configure	Add	Clear	Delete
Keep these barriers	Ignore		0	G	X
Already removed barriers	Remove		0	0	X
Controduc Domicits	opunize	247	0	0	~
1					>

What does a good crossing look like?

Upstream before

Upstream after

"You'll never look at a culvert the same way again!"

This is not just about fish!

July 2016 flood, C-N NF

July 2016 flood, C-N NF

July 2016 flood, C-N NF

Next Steps

High Resolution Survey Criteria

Four Culverts

- Two with low point adjacent to crossing (failure risk)
- Two with increased velocities (possible impedance)

Four Bridges

- Two with low point adjacent to crossing (failure risk)
- Two with increased velocities (possible impedance)

Peak Discharge Estimates

- Michigan UP regional equations (1984),
 - Consider the entire U.P. as one region
- Wisconsin area 4 equations (2003)
 - A northern Great Lakes region that includes snowmelt
- We will assess both of these options for the Paint and select best one

Model crossings in HEC-RAS

Use peak flows to estimate recurrence interval and risk of "failure"

Use survey data to estimate the amount of sediment released

Use amount of sediment to estimate consequences of failure (habitat, water quality, cost of temporary/permanent fix)

Crossing Dimensions vs Sediment and Velocity

- Will compare crossing dimensions with sedimentation up and downstream
- Will compare crossing dimensions with velocity measurements up and downstream

Thank you!

Questions?