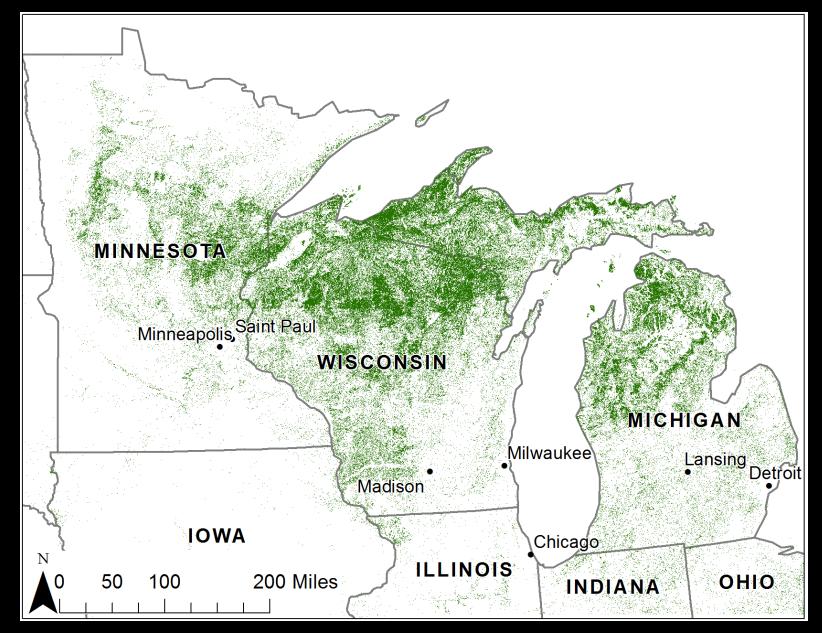
Maintaining and promoting compositional and structural diversity for forest resilience

Yvette Dickinson, PhD
Michigan SAF Fall 2016 Conference
October 6-7, 2016

Declines in structural and compositional diversity

- Regional homogenization of Lake States (Schulte et al. 2007)
 - Decline in conifers
 - Increase in maple and aspen.
 - Decline in large trees and diversity of tree sizes


Species compositional diversity

Schulte et al. (2007) Landscape Ecol 22:1089–1103

 Maple-Beech-Birch USFS FIA data, Michigan 1980 cf. 2015

- Maple-Beech-Birch USFS FIA data, Michigan 1980 cf. 2015
 - Declines in mid-tolerant and intolerant species, particularly 1-13" DBH
 - yellow birch -36% TPA
 - basswood -44% TPA
 - white pine & red pine -33% TPA
 - *Populus* spp. -19%

- yellow birch declines widely reported
 - Woods 2000; Zhang et al. 2000; Erdman and Oberg 1973;
 Crow et al 2002; Webster and Lorimer 2005; Anger et al 2005;
 Webster and Jensen 2007; Schulte et al. 2007
- basswood declines also reported
 - Woods 2000

- Maple-Beech-Birch USFS FIA data, Michigan 1980 cf. 2015
 - Declines in mid-tolerant and intolerant species, particularly 1-13" DBH
 - Increases in shade tolerant
 - Spruce & balsam fir + 125% TPA
 - But decline in sugar maple (-25% TPA), particularly 1-7" DBH

- Maple-Beech-Birch USFS FIA data, Michigan 1980 cf. 2015
 - Declines in mid-tolerant and intolerant species, particularly 1-13" DBH
 - Increases in shade tolerant
 - Also, changes due to exotic invasives?
 - beech +84% TPA, increase <7" DBH and decline >7" DBH
 - ash -22% TPA

Challenges

Exotic invasive species

Challenges

- Exotic invasive species
- Climate change

Uncertain future climate

- Possible <u>decline</u> in suitable habitat: balsam fir, black spruce, jack pine, Northern white cedar, paper birch, quaking aspen, white spruce, eastern white pine
- Possible <u>increase</u> in suitable habitat: a number of oaks and hickories, black walnut, elms, yellowpoplar
- <u>Uncertain</u> forest responses: yellow birch, sugar maple, basswood

(Handler et al. 2013; Janowiak et al. 2014)

Challenges

- Exotic invasive species
- Climate change
- Balancing multiple ecosystem services: provisioning, regulating, supporting and cultural

Challenges

- Exotic invasive species
- Climate change
- Balancing multiple ecosystem services: provisioning, regulating, supporting and cultural
- Uncertain future biomaterial markets and societal needs

Diversity is one approach to mitigate many of these challenges

Greater species richness:

- ensures stability of ecosystem production
 - functional redundancy
 - Greater richness needed as variability increases with temporal and spatial scale
- may increase productivity through complementarity
- generally reduces susceptibility to invasion
- will preserve management options

Hooper et al. (2005)

Diversity is one approach to mitigate many of these challenges

- Structural diversity may also confer ecological resilience and resistance
 - Variations in susceptibility
 - Survivors promote recovery e.g. advance regeneration and seed banks

Yellow birch

- Hard mast for birds and rodents
- Catkins, buds and leaves for grouse and hares
- Browse for ungulates
- Rough bark habitat for insects, birds and bats
- Cavities

Basswood

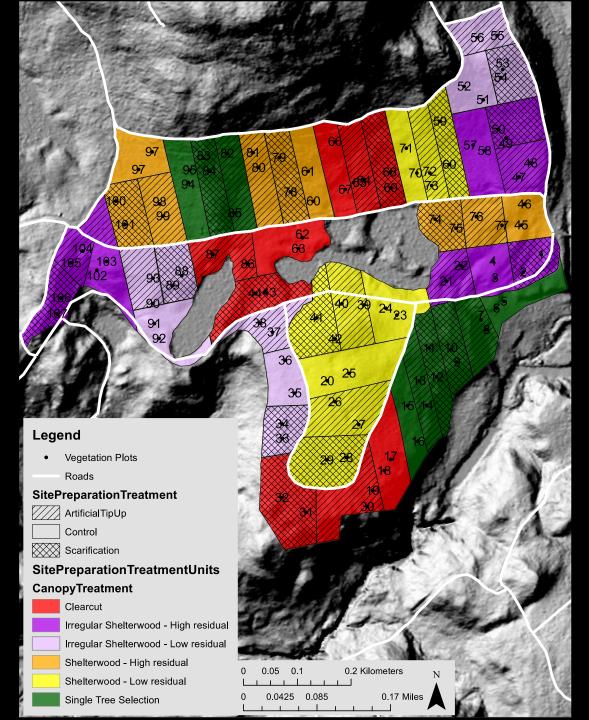
- Important nectar source
- Mast for rodents
- Cavities
- Improves soil condition linked with reduced sugar maple decline (Cote et al. 1999)
- "Trap crop" Asian Longhorn Beetle? (Turgeon et al. 2016; Smith et al. 2009)

http://www.botany.wisc.edu/

 Continue to focus on promoting and maintaining diversity within stands and across landscape

- Continue to focus on promoting and maintaining diversity within stands and across landscape
- Actively manage landscapes to retain and promote a diversity of stand ages and structures

- Continue to focus on promoting and maintaining diversity within stands and across landscape
- Actively manage landscapes to retain and promote a diversity of stand ages and structures
- Avoid prescriptions that target the removal of specific species
 - Retain potentially resistant individuals during salvage
 - Retain future management options


- Mimic the full range of natural disturbances
 - Vary silvicultural prescriptions across the landscape

- Mimic the <u>full</u> range of natural disturbances
 - Vary silvicultural prescriptions across the landscape
 - Use existing silviculture recommendations to promote yellow birch (MI DNR)
 - Range of gap sizes (25-167ft diameter)
 - Deer and competition control (Walters et al. 2016, Kern et al. 2016)
 - Leave vigorous seed trees (Poznanovic et al. 2013)
 - Expose mineral soil
 - Even-aged regeneration methods e.g. shelterwood
 - Likely to also favor basswood

Continue to focus on promoting and maintaining diversity within stands and across landscape

Continue to investigate new silvicultural systems

NHSEED: Northern Hardwood Silviculture Experiment to Enhance Diversity

Take home messages

- Continued decline of mid-tolerant and intolerant species in the northern hardwoods over the last 35 years
- Continue to focus on promoting and retaining diversity in forest stands
 - Including previously "uneconomic" species?
- Use a diversity of silvicultural approaches (within reason) and active adaptive management