Context Matters: Forest Management Impacts Wildlife and Biodiversity at Multiple Spatial Scales

Andrew D. Crosby and William F. Porter

Shift in Forest Management Goals

- "Daydreaming" by Thomas F. Gross

Introduction

Diversity Partitioning

Diversity Contribution

The Ecosystem Management Paradigm

The Ecosystem Management Paradigm

Introduction

Diversity Partitioning

Diversity Contribution

The Ecosystem Management Paradigm

Variability and Biodiversity

Maintaining patterns of variability

Introduction

Diversity Partitioning

Diversity Contribution

Discussion

Large-scale Management Systems

Large-scale Management Systems

Large-scale Management Systems

Bird Species Diversity on Managed Forests

Introduction

Diversity Partitioning

Diversity Contribution

Components of Diversity (Whittaker 1960)

 α = within-unit diversity β = among-unit diversity γ = total diversity

Introduction

Diversity Partitioning

Diversity Contribution

Discussion

Components of Diversity (Whittaker 1960)

 α = within-unit diversity β = among-unit diversity γ = total diversity

Introduction

Diversity Partitioning

Diversity Contribution

Discussion

Objectives:

 Determine management scales important for driving regional bird species diversity

2. Investigate factors that make units important contributors to regional diversity

Introduction

Diversity Partitioning

Diversity Contribution

Discussion

Study Area: Western UP of Michigan

Discussion

Study Design:

Additive Partitioning of Diversity

lpha Within point diversity

Introduction

Diversity Partitioning

Diversity Contribution

 $+ \beta_1$ Diversity among points

lpha Within point diversity

Introduction

Diversity Partitioning

Diversity Contribution

- + β_2 Diversity among neighborhoods + β_1 Diversity among points
- α Within point diversity

Introduction

Diversity Partitioning

Diversity Contribution

- + β_3 Diversity among management areas + β_2 Diversity among neighborhoods + β_1 Diversity among points
- lpha Within point diversity

Diversity Partitioning

Diversity Contribution

- + β_4 Diversity among ecoregions + β_3 Diversity among management areas + β_2 Diversity among neighborhoods + β_1 Diversity among points
- lpha Within point diversity

Diversity Contribution

- $= \gamma$ Total regional diversity
- $+ \beta_4$ Diversity among ecoregions
- $+\beta_3$ Diversity among management areas
- $+\beta_2$ Diversity among neighborhoods
- lpha Within point diversity

+ β_1 Diversity among points = γ Total regional diversity

Additive Partitioning Results

Objective 2: Diversity **Contribution of Each Site**

•We can calculate the contribution of individual sites to overall diversity

Objective 2: Diversity Contribution of Each Site

 $\alpha_{site} + U_{site} = C_{site}$

•We can calculate the contribution of individual sites to overall diversity

 $C + C + C = \gamma$

Introduction Diversity Partitioning

Diversity Contribution

Objective 2: Diversity Contribution of Each Point

• Estimated "Uniqueness" of each point based on compositional and structural variables

Objective 2: Diversity Contribution of Each Point

• Used 11 variables at each site describing forest composition and structure:

Basal Area	Density	Other
Total basal area	Large trees (>50cm DBH) per ha	% Canopy openness
% BA in conifer	Snags (>25 cm DBH) per ha	Topographic Wetness Index
% BA in Deciduous non-maple	Pole-sized trees per m ²	Diameter distribution
	Saplings per m ²	
	Proportion saplings in conifer	
oduction Diversity Partitioning Diversity Contribution Discus		

Point-level Diversity Contribution:

Environmental variability and Diversity Contribution

Environmental heterogeneity

Introduction

Diversity Partitioning

Diversity Contribution

Environmental Variability and Diversity Contribution

Introduction Diversi

Diversity Partitioning

Diversity Contribution

Discussion

Discussion

•Scale matters in biodiversity conservation

- Bird species diversity is being driven primarily at smaller spatial scales – among points and neighborhoods
- Management areas and ecoregions are largely similar in their species composition and relative abundance

Discussion

 Bird species diversity is being driven primarily at smaller spatial scales – among points and neighborhoods

 Management areas and ecoregions are largely similar in their species composition and relative abundance

Discussion

•There is a strong positive link between the uniqueness of a site and its contribution to regional biodiversity

 High biodiversity does not necessarily equate with a higher diversity contribution

Introduction

Study Area

Methods

Results

Discussion

Forest Type Diversity Contribution

High Contribution Sites

Introduction

Diversity Partitioning

Diversity Contribution

Take-home Messages

- •In our region:
 - 1. Retain overstory conifers and largediameter trees
 - 2. Create canopy openings
 - 3. Maintain some areas with very low canopy cover

Introduction

Study Area

Methods

Results

Management Implications

 Biodiversity is a scale-dependent measurement, and patterns change as scale changes

- It is critical that managers:
 - 1. Recognize and conserve unique areas
 - 2. Understand the importance of maintaining heterogeneity across scales

Introduction

Study Area

Methods

Results

Management Implications

- Larger management scales
 - 1. Greater environmental variability leads to greater biodiversity
 - 2. Seems important to keep some areas variable and some more homogeneous

Introduction

Study Area

Methods

Results

Acknowledgements

- Boone and Crockett Club
- Quantitative Wildlife Center
- Michigan DNR
- MSU Department of Fisheries and Wildlife
- The Glassen Foundation

Orial Fou

Additive Partitioning at **3** Diversity indices multiple scales **Species Richness** Shannon Diversity $\alpha + \beta_1 + \beta_2 = \gamma$ **Simpson Diversity** α Introduction **Diversity Partitioning Diversity Contribution** Discussion