# MDOT Forested Wetland Mitigation

#### MDOT Wetland Mitigation Summary

- MDOT has tracked wetland mitigation for the past 25+ years
- MDOT mitigates for every wetland impact
  - Executive Order 11990

# Wetland Mitigation Acreage

|                       | FORESTED | SCRUB-<br>SHRUB | EMERGENT | OPEN WATER | TOTAL  |
|-----------------------|----------|-----------------|----------|------------|--------|
| DELINEATED (71)       | 286.4    | 86.2            | 419.7    | 85.8       | 878.2  |
| DESIGN<br>EFFICIENCY  | 60.9%    | 51.5%           | 119.4%   | 237.7%     | 85.7%  |
| ESTIMATED (51)        | 97.4     | 46.9            | 401.0    | 46.1       | 519.6  |
| TOTAL                 | 383.8    | 133.1           | 820.7    | 131.9      | 1397.8 |
| REQUIRED BY<br>PERMIT | 443.1    | 126.1           | 550.1    | 38.3       | 1157.5 |
| EXCESS/DEFICIT        | -59.4    | 7.0             | 270.7    | 93.7       | 240.2  |

# Wetland Hydrology

- Single most important factor affecting the success of restoration efforts
- Nationally most wetlands are designed too wet
- Wet tolerance of planted stock increases with age
- Hydrology must be monitored and/or manipulated to ensure long term success
- Some design elements reduce risk of improper hydrology

#### **Hydrology Recommendations**

- Adjustable water control structures
- Electronic monitoring wells
- Elevations of all structures/wells should be surveyed and adjustments should be tracked
- For forested wetlands, stop logs should initially be set 6" to 1' below finished grade
- May need to leave sites dry for 2-3 years for survival of trees/shrubs

# Maintaining Hydrology







Agri Drain In-Line Water Control
Structure



# Grading

- Forested, scrub-shrub and wet meadow wetlands <u>must</u> be graded at the same elevation per wetland cell (most sites)
  - 3 inch tolerance between emergent and upland
  - Ideally uniform water control across site
- Incorporate microtopography or drainage swales to increase tree/shrub survival

#### **Grading Examples**



Drainage Channel

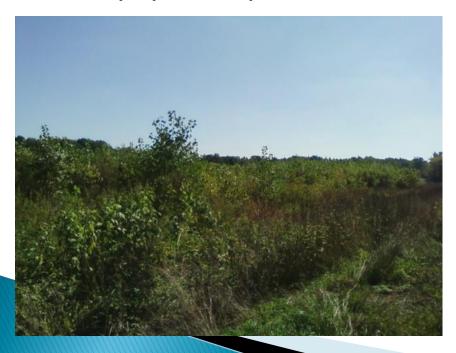


Flat Grading



Rough Grading




Pit and Mound Topography

## **Planting**

- Spring or fall planting during dormancy acceptable
  - Fall may have more frost heaving
  - Bare Root Stock has been used extensively due to low cost and high planting densities
  - Root-Pruned Managed (RPM) stock is more costly; however may yield better survival
- ▶ May need to control water (keep dry) for 2-3 years
- Popular Planted Tree Species
  - Silver maple (*Acer saccharinum*)
  - Swamp white oak (Quercus bicolor)
  - Pin oak (*Quercus palustris*)
  - Sycamore (*Platanus occidentalis*)
  - Bur oak (*Quercus macrocarpa*)

#### **Volunteer Species**

- Eastern cottonwood (*Populus deltoides*)
- Silver maple (*Acer saccharinum*)
- Green ash (Fraxinus pennsylvanica)
- Red maple (Acer rubrum)
- Black willow (Salix nigra)
- Balsam poplar (*Populus balsamifera*)





# Adaptive Management / Corrective Action

- Installing larger water control structures to remove excess water quickly
- Invasive species control
- Lowering water levels for cattail eradication
  - Can convert to wet meadow in 2–3 years
- Plugging tiles missed during construction
- Re-planting trees/shrubs/plugs

## Final Thoughts

- Wetland hydrology control/management is key to success
- Certain wetland types (forested/scrub-shrub) are difficult to establish
- Initial prevention/control of invasive species is essential
- Factors often arise after construction that need to be addressed
- Other unknown variables affecting tree mortality