

TREE REGENERATION, A FOUNDATIONAL PROCESS TO SILVICULTURAL SUCCESS

Presented by Dr. Christel C. Kern, USDA FS Northern Research Station

For the Michigan SAF Spring Meeting, Petoskey, MI On October 16th, 2014

TOP: HTTP://MFF.DSISD.NET/ENVIRONMENT/TREEPHYS.HTM BOTTOM: HTTP://WWW.FOR.GOV.BC.CA/HFD/PUBS/SSINTROWORKBOOK/WHATISSS.HTM

OUTLINE

Forest ecology

- Natural disturbance
- Natural stand dynamics
- Regeneration triangle
- Silvicultural systems
 - Regeneration harvests
 - Regeneration methods
- Integrating knowledge
 - Diagnosing
 - Prescribing
 - Monitoring
- Challenges

http://whitemountainsojourn.blogspot.com/2009/07/blog-post_24.html

VALUES OF FOREST ECOSYSTEMS

Forests support biodiversity. Forests provide a wide range of goods and services.

Forests are a renewable resource

Because of tree regeneration!

U.N. International Year of Forests, 2011

OUTLINE

Forest ecology

- Natural disturbance
- **Natural stand dynamics**
- Regeneration triangle
- Silvicultural systems
 - Regeneration harvests
 - Regeneration methods
- Integrating knowledge
 - Diagnosing
 - Prescribing
 - Monitoring
- Challenges

http://whitemountainsojourn.blogspot.com/2009/07/blog-post_24.html

Natural disturbance

- Altered structure, resources, substrate availability, or environment conditions provide growing space for tree regeneration
- Example: Fire is an important mechanism to regenerating patches/stands of red pine.

http://www.lakestatesfiresci.net/w ebinar_I_I9_I2.htm

 Natural stand dynamics (Oliver & Larson 1996)

Natural stand dynamics (Oliver & Larson 1996)

Stand initiation (regen)

Natural stand dynamics (Oliver & Larson 1996)

- Stand initiation (regen)
- Stem exclusion

 Natural stand dynamics (Oliver & Larson 1996)

- Stand initiation (regen)
- Stem exclusion
- Understory re-initiation (regen)

 Natural stand dynamics (Oliver & Larson 1996)

- Stand initiation (regen)
- Stem exclusion
- Understory re-initiation (regen)
- Old growth (regen)

 Natural stand dynamics (Oliver & Larson 1996)

- Stand initiation (regen)
- Stem exclusion
- Understory re-initiation (regen)
- Old growth (regen)

Example: Gap-phase dynamics in the old growth stage are important to regenerate small patches or individual trees in northern hardwood forests.

NATURAL REPRODUCTION TRIANGLE

FOREST ECOLOGY

Regeneration triangle

Definition: Seed supply and the interacting factors affecting germination, establishment and survival

Example: Yellow Birch

- Seed supply:
 - Mature, seed-bearing source available
 - Seed crop every 2-3 years
 - Wind dispersed up to 1,000 feet
- Seedbed:
 - Decaying wood or mineral soil
- Environment:
 - Partial light, moderate to well-drained _____soil

Roe et al. 1970;

te://www.cof.orst.edu/cof/teach/for442/cnotes/sec13/trifin.gif

OUTLINE

Forest ecology

- Natural disturbance
- Natural stand dynamics
- Regeneration triangle

Silvicultural systems

- Regeneration harvests
- Regeneration methods
- Integrating knowledge
 - Diagnosing
 - Prescribing
 - Monitoring
- Challenges

http://whitemountainsojourn.blogspot.com/2009/07/blog-post_24.html

Definition (from SAF Dictionary of Forestry)

Silviculture: "the art and science of controlling the establishment,..."

Definition (from SAF Dictionary of Forestry)

- Silviculture: "the art and science of controlling the establishment, ..."
- Silvicultural system: "a planned series of treatments for ... re-establishing a stand the system name is based on ...the regeneration method used"

http://for y/stovall/s /silvi

Regeneration (or reproduction) method: "a cutting procedure by which a new age class is created" (SAF Dictionary of Forestry)

<u>Coppice</u> -Coppice	Favors shade intolerant spp. \leftrightarrow Favors shade tolerant spp.
	Even Aged 1. Clearcut 2. Seed-tree 3. Shelterwood
	Two Aged
estry.sfasu.edu/facult ilviculture/index.php culture-textbook-sp- 418/150-silvicultural-	5. With reserves
systems-sp-28339	Uneven Aged 6. Patch selection 7. Group selection 8. Single tree selection

Regeneration: "the act of renewing tree cover by establishing young trees naturally or artificially" (SAF Dictionary of Forestry)

<u>Artificial</u> -Direct seeding -Planting

<u>Natural</u> -Natural seeding -Coppice -Root suckers

Example: Northern hardwood forests

- "Classic" approach
 - Single-tree selection
 - Natural seeding

OUTLINE

Forest ecology

- Natural disturbance
- Natural stand dynamics
- Regeneration triangle
- Silvicultural systems
 - Regeneration harvests
 - Regeneration methods

Integrating knowledge

- Diagnosing
- Prescribing
- Monitoring
- Challenges

http://whitemountainsojourn.blogspot.com/2009/07/blog-post_24.html

Adaptive management through the prescription process

Adaptive management through the prescription process

 <u>OBSERVATION</u>: Describe site and current stand conditions, and desired future conditions

Adaptive management through the prescription process

- <u>OBSERVATION</u>: Describe site and current stand conditions, and desired future conditions
- DIAGNOSIS: Determine management objectives

Adaptive management through the prescription process

- <u>OBSERVATION</u>: Describe site and current stand conditions, and desired future conditions
- DIAGNOSIS: Determine management objectives
- PRESCRIBE: Justify the recommended approach then detail the sequence of events, timing, techniques, and mitigation measures

Adaptive management through the prescription process

- <u>OBSERVATION</u>: Describe site and current stand conditions, and desired future conditions
- DIAGNOSIS: Determine management objectives
- PRESCRIBE: Justify the recommended approach then detail the sequence of events, timing, techniques, and mitigation measures
- <u>MONITOR</u>: Detail criteria necessary to judge success of regeneration (or treatment effectiveness); use meaningful timeframes

- Density
- Species
- Time frame

Example: SILVAH - Decision support for managers of Allegheny hardwood and mixed oak ecosystems By Scott Thomasma_and Susan Stout

- Spatial distribution (e.g., group opening)
- Minimum density required in canopy
- Free of recruitment limitations (or "Free to grow")

Example: Wisc. NHW -13 years post harvest in gaps; sapling height equations; % tree cover; % species; # dominants; gap size...

OUTLINE

Forest ecology

- Natural disturbance
- Natural stand dynamics
- Regeneration triangle
- Silvicultural systems
 - Regeneration harvests
 - Regeneration methods
- Integrating knowledge
 - Diagnosing
 - Prescribing
 - Monitoring
- Challenges

http://whitemountainsojourn.blogspot.com/2009/07/blog-post_24.html

Forest ecology is messy with bottlenecks to natural regeneration

- Interference with the regeneration triangle
- Non-tree vegetation
- Animal feeding
- Disease infestations
- Insect outbreaks
- ► Fire
- Extreme weather events

Forest ecology is messy with bottlenecks to natural regeneration

- Research study on tip-up mounds, WI
 - New mound creation lost with salvage
 - Mound creation in high value conservation areas?

 Conventional silvicultural systems are based on assumptions about regeneration

> Single-tree selection assumes trees less than merchantable size

www.uky.edu/~jmlhot2/courses/for350/Uneven-

Conventional silvicultural systems are based on assumptions about regeneration

Research study, Dukes Experimental Forest, MI Sustainability of Arbogast structure over time

Decoupling of natural processes

Migration and adaption of trees to new conditions may be uncoupled from functional processes such as pollination, symbiotic associations, ...

Figure SPM.5.

http://www.torreyaguardians.org/assisted-migration.html

- Decoupling of natural processes
- Research study, sites?
 - Susceptibility of species x seed source to browse

OUTLINE

Forest ecology

- Natural disturbance
- Natural stand dynamics
- Regeneration triangle
- Silvicultural systems
 - Regeneration harvests
 - Regeneration methods
- Integrating knowledge
 - Diagnosing
 - Prescribing
 - Monitoring
- Challenges
 - You can help!

http://whitemountainsojourn.blogspot.com/2009/07/blog-post_24.html

VALUES OF FOREST ECOSYSTEMS

Forests support biodiversity. Forests provide a wide range of goods and services.

Forests are a renewable resource

Because of tree regeneration!

U.N. International Year of Forests, 2011

THANKS! - - - QUESTIONS?

Please contact:

Christel Kern Research Forester and Lead Scientist for Argonne and Dukes Experimental Forests

USDA FS Northern Research Station 1831 Hwy 169E, Grand Rapids, MN 55744 USA

Office: +1 218-326-7134 Email: <u>cckern@fs.fed.us</u>

