

Maria Janowiak

Northern Institute of Applied Climate Science

Options for Responding

Options for Responding

Options for Responding

Greenhouse
Gases

Climate Change

CC Impacts

Forests in the Carbon Cycle

US Forests in the Carbon Cycle

US forests annually sequester the equivalent of 10% of US carbon dioxide emissions from burning fossil fuels

World Forests in the Carbon Cycle

Globally, at least 17% of emissions are from the forestry sector: deforestation and land use change.

Forest Carbon Markets

- Carbon sequestration in forests is used to "offset" emissions produced elsewhere
- \$237 million in 2011
- Compliance markets
 - ➤ California, British Colombia, elsewhere...
- Voluntary markets
 - > Small, but growing

Mitigation: Forest Carbon Mgmt.

- Mitigation includes human actions to reduce the effects of climate change by reducing sources and enhancing sinks of greenhouse gases
- Three broad categories:
 - 1) Sequestration
 - 2) Emission avoidance
 - 3) Substitution

Forest Carbon – Where is it?

Forest Carbon – Where is it?

Amount of C varies by forest type and region

Example:

75-year-old stand of northern hardwoods (sugar maple, beech, and yellow birch) in the Lake States

> Total = 112.8 Mg C per acre

Forest Sector Carbon Cycle

Forest Sector Carbon Cycle

Forest Sector Carbon Cycle

Life Cycle Emissions

Mitigation #1: Sequestration

Use management in forest ecosystems to sequester additional carbon

Mitigation #1: Sequestration

Example: Afforestation (create forest)

McKinley et al. 2011

Mitigation #1: Sequestration

Example: Forest management for

increased carbon storage

Increased forest growth:

- > Enhanced regeneration
- Competition control
- > Fertilization
- ➤ Improved/superior stock

Wood Products:

- > Products in use
- > Landfills

Mitigation #2: Emission Avoidance

Prevent carbon from being emitted into the atmosphere

Mitigation #2: Emission Avoidance

Example: Avoided deforestation/degradation

Mitigation #2: Emission Avoidance

Example: Mgmt. for reduced emissions

- ➤ Reduced harvest levels
- ➤ Longer harvest intervals
- > Reduced emissions from machinery, etc.

non-WTH

Type of harvest

Mitigation #3: Substitution

Replace fossil fuels with wood-based energy and products

Mitigation #3: Substitution

Example: Renewable energy production from biomass in place of fossil fuels

Percent reduction in lifecycle greenhouse gas emissions

Figure data from EPA 2007

Mitigation #3: Substitution

Example: Wood used in place of more energy or emissions intensive materials

Embodied energy in three different types of houses.

Figure from Glover et al. 2002

Forest Mitigation Complexity

- 1) Location and situation specific
 - > Ecosystem, Management goals, Condition
- 2) Determining 'baseline'
- 3) Multiple scales
 - > Time, Space
- 4) Life cycle emissions
 - Upstream, Downstream

Summary – Managing Carbon in Forests

Forests in the carbon cycle:

- Forests are really good for carbon.
- Sustainably managed forests are better.

Carbon in forest management:

- Carbon is an important ecosystem benefit.
- Carbon can be balanced with other management objectives.