Insects and Diseases that Influence Forest Management in Michigan

Andrew J. Storer, Michigan Technological University TODAY'S FORESTS – TOMORROW'S MARKETS an Society of American Foresters and the Canadian Institu Central Ontario Section The Mir

March 31, 2009 Michiganiech

Examples of Insects and disease influencing forest management

Today - Emerald ash borer

- Beech bark disease

Tomorrow

- Sirex woodwasp - Sugar maple dieback
- Hemlock woolly adelgid
- Sudden oak death - Asian longhorned beetle

Examples of Insects and disease influencing forest management Today - Emerald ash borer - Beech bark disease Tomorrow - Sirex woodwasp - Sugar maple dieback - Hemlock woolly adelgid - Sudden oak death - Asian longhorned beetle

Forests today - Markets tomorrow

- Detection to delimit distribution

 Where will material come from?
- Direct effect of insects or disease on timber supply – How much material will there be as a result of salvage of infested material?
- Indirect effect of insects or disease on timber supply management efforts How much material will be generated during pre-salvage or sanitation ahead of the infestation?

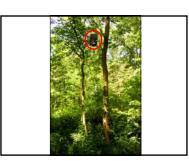
Emerald ash borer – detection by visual survey

 Usually only finds well established populations

Houghton County

- Confirmed in August 2008
- Over 50 infested trees
- Estimates of up to 8 years old - Spread less than one mile based on initial
- ground survey Site processing to reconstruct spread is
- underway

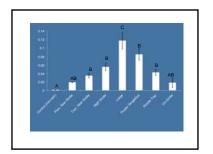
Quarantine


- Compliance agreements can be obtained by working with the MDA
- Location receiving the material (mills etc) also need a compliance agreement

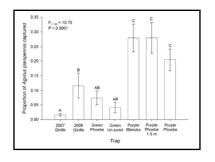
EAB Detection at low density 2008 Detection survey methods

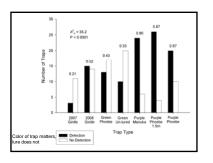
At each site

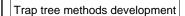
- 3-6 new trap trees established
- 0-6 trap trees from previous years used (2007 and 2006)
- 1 purple trap hung at base of canopy of non-girdled ash tree



	Adults trapped	Thees Infested
Gindled trap tree	1	8(1-107 larves
Non-girdled trap tree	0	0
Purple prism trep:	a	1

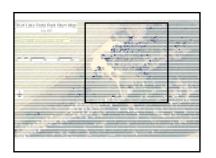





At Low EAB Density with logistic reg.

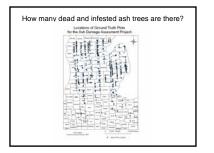
 The odds of detecting EAB decrease by 5.3% with each increase of 1 m²/ha of live ash basal area using all these traps.
 An increase of 8.88 m²/ha (2 SD) in live ash basal area would result in a reduction by 47% in the odds of detecting EAB.

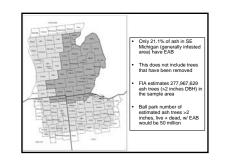
Results			
Тгар Туре	Change in Odds with ash basal area increase		
Prev. Year Girdle	-6.70		
Curr. Year Girdle	-8.78		
High Girdle	-9.48		
Large Girdle	5.43		
Purple Tanglefoot	-6.24		
Purple Trap	-3.68		
Un-girdled	-14.67		



- Which trees are preferred in areas with low EAB population density?
- Which non-girdled trees does the beetle

land on?


 Avoids use of girdled trap trees and colored traps

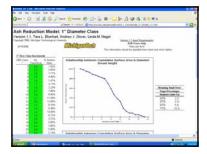


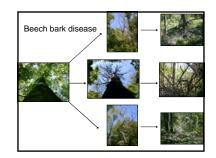
Sticky bands on non-girdled				
trees				
Burt Lake State Park Detection in 2006 2007 32 beetles on 10 trees 2008 196 beetles on 37 trees Harrisville State Park Detection in 2006 2007 0 beetles 2008 15 beetles on 11 trees	Trees most likely to have landings • Larger dbh • Higher amount of dieback • More dominant crown class			

ntire area 16.9% 80.6% 12.1% E MI area 21.1% 75.7% 13.4%		Live and dead with EAB	Live w/o EAB	Live w/EAB
E MI area 21.1% 75.7% 13.4%	Entire area	16.9%	80.6%	12.1%
	SE MI area	21.1%	75.7%	13.4%
ther areas 12.9% 85.1% 10.8%	Other areas	12.9%	85.1%	10.8%

	Dead w/o EAB	Dead w/EAB	Dead
Entire area	2.5%	4.8%	7.3%
SE MI area	3.1%	7.7%	10.8%
Other	2.0%	2.1%	4.1%
areas			

An optimists project

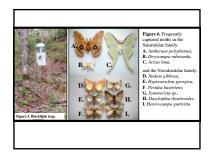

- Identify and characterize ash trees in the core area that are still alive.
- Demonstrate that there is a population of ash trees in southern Michigan that will
- persist into the future.
- Produce a database of these trees to enable long-term assessment of the impacts of EAB.



Pre-salvage thinning of ash

Ash phloem models to reduce the amount of ash phloem in stands ahead of or shortly after arrival of emerald ash borer www.ashmodel.org

Disease Progression


- Advancing front Recently invaded by beech scale. Characterized by many large, old trees supporting building populations of scale
- Killing front Characterized by severe scale infestation, Nectria infections and high tree mortality
- Aftermath forest Heavy mortality occurred at some time in the past. Some residual big trees persist and many small trees (often of sprouting origin) that are deformed

Impacts on trees

- Large trees, over about 8 inches (20.3 cm) in diameter, succumb more readily than small ones
- Data from plots in Vermont, New Hampshire, and Maine show that about 28 percent of the large beech had died, another 22 percent were dying
- Many of the surviving trees were so severely injured that they offer little hope as a source of quality material
- Some trees do appear to be resistant

Impacts on Forests

- Loss of a dominant or codominant tree species
 Loss of major mast producing species in many areas
 Elevated coarse woody debris
 Altered tree community structure
 - ,....

Sirex noctilio - European woodwasp

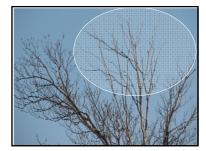
- Native to Europe, Asia and North Africa Established in Australia, New Zealand,
- South America, South Africa
- Trapped in New York in February 05 Confirmed as reared from Scotch pine in
- New York in July 2005
- Established in various states including
- Michigan ('thumb' counties)

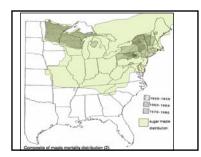
Sirex woodwasp is likely a manageable insect

- Management options include:
 Silvicultural treatments to thin stands
 - Biological control using a parasitic nematode
- To succeed we need to know where the insect is in order to
- Prioritize entry to reduce basal area and remove over mature trees
 Focus biological control efforts in the future (if needed)

Sirex woodwasp

- Detection techniques:
- Funnel trap baited with a blend of alpha- and beta-pinene
- Trees stressed by injecting with herbicide with a flight intercept trap hung from them




Sirex woodwasp

- · Currently limited to the 'thumb' area
- Insect will spread
- Favors overmature, high density pine resources
- Impact remains to be seen likely quite high in areas with suitable resources

Sugar maple dieback

- An emerging issue, especially in the western Upper Peninsula
- Appears to be widespread
- Similar dieback has occurred in the past

Largest amounts of mortality occurred in the 50's and 60's in the northern Great Lakes region attributed mostly to: - drought,

- pathogens
 past cutting practices.
- Mortality events in the east in the 70's and 80's were mostly attributed to: air pollution
- insect defoliation.

Sugar maple dieback

- Unanswered questions:
 - What is/are the cause/causes of the latest dieback?
- Will tree mortality result? – Will salvage result in increased sugar maple harvesting from the forest?

Conclusions

- Multiple agents are of concern and influence cutting practices and therefore markets
- Agents may be direct causes of tree
- mortality and resulting salvage harvests Agents may indirectly result in pre-salvage or sanitation harvests as part of
- management responses to the threat

Acknowledgments Funding USDA APHIS, USDA Forest Service

- USDA APHIS, USDA Forest Service
 Michigan Technological University
 Co-Investigators: Linda Nagel, Jordan Marshall
 Graduate students: Tara Bal, Mike Hyslop, Janet Frederick, Jessica Beachy, Brian Beachy, Justin Rosemier, Nelissa Porter
 Field surveyors/consultants: Jeff Breuker, Janet Fredrick, Keim Martell Jr, Keith Martell III, Stave Takacs, Bernie Heutter, Bernie Hubbard, Dean Reid
- Cooperators
 MI DNR: Bob Heyd, Roger Mech, Ron Murray
 USDA Forest Service: Steve Katovich
 MI.MDA: John Bedford, John Hill,