MICHIGAN'S WOOD BIOMASS INVENTORY

ANTHONY WEATHERSPOON Michigan Department of Natural Resources Forest Mineral and Fire Management May 8, 2007

Forest Resource Management

- Gather, Analyze & Disseminate Relevant Information
- Make the tie to Sustainable Management & Community Economic Growth
- Management Responsibilities for 3.9 Million Acres of State Forest Lands

Partners

- Michigan State University
- USDA Forest Service
- Michigan Technological University
- Michigan Biomass Energy Program
- SE Michigan RC&D Council
- Industry and Other Interested Parties

Why Wood Resource Inventories are Needed

Will show:

- Best economic options for processing & recycling wood
- Data for long-term, sustainable ecological & business plans
- Opportunities for new markets

Presentation Overview

- What is Woody Biomass
- Sources of Woody Biomass
- Current Uses & Markets for Woody Biomass
- Other Issues Related to Woody Biomass
- The Future

What is Woody Biomass

- Biomass is simply any organic material – living or dead
- Woody biomass includes entire living & dead trees, brush, stems, logs & residue material generated throughout various forest product processing

Woody Biomass

Forest product industries normally focus on a portion of the forest resource – sawlogs & pulpwood – without looking at other value added markets, such as:

– Tops, limbs, & brush

- Small diameter & noncommercial timber
- Wood manufacturing residues

– Urban wood

These are key opportunities for biomass energy.

Woody Biomass Sources

Diversifying age classes to create more ruffed grouse activity centers

3. Slash Utilization

Inventory

 One of the best USDA Forest Service Forest Inventory Assessments in the nation (total standing biomass, does not address availability)

Inventory

- Growing stock (commercial)
- Cull
- Species
- Possible at county level
- Does not address availability

Woody Biomass Availability

Land owner Values (over half is on

private lands)

- Price
- Sustainable requirements
- Competing Uses
- Changing Markets

Additional Biomass Potential

- Utilization of Non-Commercial Species
- Hybrid Plantations (e.g. hybrid poplar, willow)

FIA Data Base Access

- http://ncrs2.fs.fed.us/4801/fiadb/index.htm

New and Emerging Technology

Table 3—Annual Biomass Quantities in Michigan (est. dry tons), by Type and Delivered Price⁴⁷

Biomass Type	< \$20/dry ton	< \$30/dry ton	< \$40/dry ton	< \$50/dry ton
Urban Wood Residue	495,734	826,224	826,224	826,224
Mill Residue	10,000	932,000	1,248,000 (est)	1,564,000
Forest Residue	0	710,000	1,034,000	1,327,900
Energy Crops	0	0	1,154,228	4,179,308
Ag Residues	0	0	680,783	4,265,671

Simpkins, Dulcey. 2006. <u>Clean Energy from Wood Residues in Michigan</u>. Michigan Biomass Energy Program.

Woody Biomass Resource Current Uses & Markets

Slash Utilization Wildlife Implications

Slash offers habitat for some species, but too much can inhibit reforestation

Trends

- Housing decline and new OSB capacity have weakened structural panel markets
- Rising imports of furniture from Asia undermine markets for hardwood lumber and non-structural panels
- Weaker pulp and paper demand
- North American pulp and paper producers facing pressure from international competition and trade

Forest Product Primary Mills and Growing Stock Removals

Michigan Primary mill closures from 2003 to the present:					
<u>Pulpmills</u>			<u>Location</u>	<u>Volume</u>	<u>Species</u>
Menasha Corporation		Otsego	200MCDS	Mix hardwoods, Sawmill chips	
					Sawmill chips
Aspen Ba	y Pulp and	Fibre	Menominee	200MCDS	Softwoods, Aspen & Maple
SAPPI Fi	ne Paper		Muskegon 🖌	250MCDS	Aspen & Mix
Particle B	oard Mills				
GFP Strandwood Molding Corp		Hancock	10MCDS	Aspen	
Georgia-Pacific Corp		Gaylord	300MCDS	Mixed hardwoods	
					Aspen, R & J Pine
					Mill residues
<u>Sawmill</u>					
Buskirk L	umber Co.	2	Freeport	25MCDS	Hardwoods
					Ash, Cherry
					Red & White Oak
					Maple

Urban Wood Residue Sources

- Tree removals & trimmings (logs, limbs, stumps)
- Manufacturing byproducts (edgings, cutoffs, chips, shavings)
- Discarded packaging (pallets, skids, crates, dunnage)
- Construction/demolition
- Railroad ties
- Telephone poles

MI Urban Wood Estimates

2007 SEMIRCD Study – Sherrill & MacFarlane

- •Studied green & brown urban wood residues
- •To be released in spring 2007

1994 Public Policy Associates study –
Urban Wood Waste in Michigan Supply & Policy Issues
•659,328 tons, 45% utilized
•8,848,527 MBtus

1999 Oak Ridge National Laboratory study – *Biomass Feedstock Availability in the U.S.*•Estimated 826,224, dry tons/yr
•Delivered price of <\$30/dry ton

Biomass Energy from Wood

- Renewable
- Local
- Reliable
- Sustainable
- Affordable
- Low carbon emission
- Minimal ash
- Very low metals and sulfur

 Good option for schools, hospitals, and other institutions facing high energy costs
 Can be used through new

construction or boiler retrofit

Resource	Energy Characteristics	Advantages	Disadvantages	Technology
Wood and wood residue	 green wood: 4,800 Btu/lb (45% moisture content, wet basis) dry mill residue (brown wood): 6930 btu/lb (13% moisture content, wet basis) pellets or briquettes: 8000-9000 btu/lb (8% moisture content, wet basis wood-to-ethanol life cycle fossil energy ratio: 14-29:1 	 renewable, locally abundant dispatchable (storable), not intermittent (solar, wind) known technology for heating, boilers, co-firing much cleaner than coal, carbon neutral if harvested sustainably pollution prevention for wood industry and processing prevents landfilling of organics improved forest health, reduced impact of fires insects diseases 	 lower energy content than non-renewable fossil fuels can be expensive to transport requires storage space must be dried for some energy applications can be contaminated lack of consensus on susteinability 	 NOW wood fired boilers wood and coal co-fired boilers co-fired boilers co-firing with other biomass pyrolytic oils (biooils) FUTURE wood-to-ethanol syn-fuels

Table 2—Wood Energy Characteristics, Merits, and Technology Options

Simpkins, Dulcey. 2006. <u>Clean Energy from Wood Residues in Michigan</u>. Michigan Biomass Energy Program.

Wood Energy Facilities in Michigan

Table 1—Facilities Producing Wood Energy in Michigan

Source: REPiS, online at <u>http://www.nrel.gov/analysis/repis/</u>.

Туре	Capacity (KW/year)
Michigan Total	368,170
Utility (six sites)	173,100
On-site Upper Peninsula	150,800
On-site Lower Peninsula	44,270

Analyzing Potential for Small, Local Projects: Statewide Boiler Assessment

Goal: Identify boilers in MI that could be converted to use woody biomass (by either retrofit or replacement)

- Develop database listing boiler characteristics statewide
- Categorize boilers by institution/industry type
- Assess owner interest in biomass energy/conversion and identify contacts
- Prioritize candidates for conversions

(Project of the SE Michigan RC&D, US Forest Service, Michigan DLEG Energy Office, and Michigan DNR)

Competing Markets

- Mulch & hydromulch
- Pulp & paper
- Wood composites
- Landfill cover
- Bulking agents
- Soil amendments
- Animal bedding
- Biofilter media
- Refurbished pallets
- Solid wood milled products

Other Issues

- Location distinguishing residues from waste
- Landfills and tipping fees
- Transportation
- Harvesting
- Collection
- Processing drying, chip size requirements

The Future

Emerging Michigan Markets

- Fuel pellets
- Liquid fuels
- Biorefineries

Other Resources

Clean Energy from Wood Residues in Michigan

Michigan Biomass Energy Program Dulcey Simpkins, Coordinator

> Discussion Paper June 2006

Grant Opportunities & Events

- Woody biomass feasibility grants funds for on-site engineering assessments in public institutions – see www.semircd.org/ash for more info - DEADLINE is April 16, 2007
- Woody biomass system installation grant (up to \$65k) will be announced in May 2007 on www.semircd.org/ash
- Forest Products Society event: "Expanding the Bioeconomy" at DeVos Center in Grand Rapids, May 15, 2007 – see www.fpsgreatlakes.org for more info

Michigan's Opportunities

- Existing forest businesses and infrastructure
- Productive forest
- High quality hardwoods
- Higher Gross Vehicle
 Weights
- Ingenuity
- Bioeconomy (liquid fuel, heat and electricity)

Bioeconomy Challenges

- Developing manufacturing technology for liquid fuel production
- Redesign harvest and transportation technologies
- Understand feedstock inventory/availability to support investor decisions

Thank you

Great Lakes, Great Times, Great Outdoors

www.michigan.gov