

Jesse A. Randall and Michael B. Walters (MDNR-PERM), Department of Forestry, Michigan State University For information contact: RANDAL35@MSU.EDU

Currently

Michigan forests with high deer numbers have:

- limited tree regeneration
- less structural complexity in the remaining forests
- shifts in understory
 vegetation to less browsed
 species such as sedge
 (Carex pensylvanica) and
 Ostrya virginiana.

Research questions:

- 1) What happens to the forest when you have high deer and high sedge densities?
- 2) Does light and sedge have an effect on sugar maple seedling growth and survival?
- 3) Can timed herbicide applications effectively control sedge while reducing the impacts to non-target species such as seedlings and herbs?

Study area

 International Paper's (IP) lands in Menominee County, Michigan

• Dominated by sugar maple (*Acer saccharum*), with a long history of selection harvesting.

• Nutrient rich drumlins with high deer densities (> 30 deer/mile²)

• Little recruitment of seedlings to sapling sized trees for over 25 years

• High sedge densities (≥80% of herb layer biomass)

Five replicate exclosure / open areas (•) and six timed herbicide treatment areas (•)located in Menominee County, MI.

What happens to the forest when you have high deer and high sedge densities?

Treatments initiated mid July 2000

 Glyphosate followed by mechanical soil scarification
 All vegetation killed with glyphosate herbicide
 Sedge removal
 No treatment (control) Unfenced

Sedge removal

Herbicide + Scarification

Herbicide

Control

Are deer densities that different on our sites?

Flowering trillium counts:

Are deer densities that different on our sites?

Flowering trillium counts:

Open to deer = 18 / acre Deer excluded = 1200 / acre Sedge biomass (4 years after treatments)

Height distribution of sugar maple seedlings – Open to deer browsing

Sugar maple seedling survival (4 growing seasons)

<u>Treatment</u>	Deer excluded	Open to deer
Control	63	24
Sedge Removal	56.5	22
Herbicide	78.4	25
Herbicide + Scarification	73.6	29

Control areas – deer excluded

Sedge Removal – deer excluded

Herbicide

Herbicide + soil scarification

Does light and sedge have an effect on sugar maple seedling growth and survival?

Sugar maple seedling height (4 years after vegetation removal)

% Light Available

Can timed herbicide applications effectively control sedge while reducing the impacts to non-target species such as seedlings and herbs?

Summer application

Sedge biomass (Harvested 2 years after treatment)

Treatment

Vegetation biomass (Harvested 2 years after treatment)

Sedge

Vegetation biomass (Harvested 2 years after treatment)

Sedge

Treatment

Sugar Maple Germinants

Timed herbicide application – seedling survival (726 days)

Sugar maple seedlings browsed

Treatment

Management Recommendation

1) If deer densities are reduced the forests will regenerate

- What you have now is what you will have in the future e.g. ironwood seedlings = ironwood saplings
- Thus your treatments will depend on what you have or don't have as advanced regeneration

Management Recommendation

2) Apply a broad-spectrum herbicide in mid-late fall

- Fall application effectively controls sedge
- 1 the number of seedling germinants
- 1 seedling survival
- ↓ mortality of non-target herb species and advanced seedling regeneration

Management Recommendation

3) If you treat in the fall, opening the canopy up and leaving large seed trees may increase the chance for success

- \uparrow seed trees = more germinants
- 1 light promotes seedling growth
- Operationally, removing trees will make aerial and/or ground-based spraying easier

Acknowledgements

Funding provided by:

- Michigan Department of Natural Resources (MDNR)
- Sand County Foundation's Bradley Fund for the Environment
- MSU Land Policy Program Graduate Research Scholar
- MSU Plant Science Fellowship program
- Safari Club International
- The Michigan Botanical Club Hanes Fund
- **International Paper**

We thank the many individuals at International Paper and MSU who assisted with site selection and sample collection. Special thanks to L. Holcomb, A. Klein, M. McDermott, N. Nelson, and D. Schillinger for field and lab assistance.

BA (ft²/ac) of trees > 10 inches DBH