Ecological impacts of deer overabundance

Jean-Pierre Tremblay¹, Steeve Côté¹, Thomas P. Rooney², Christian Dussault¹ and Don M. Waller²

 ¹ NSERC – Anticosti Forest Products Industrial Research Chair, Département de biologie and Centre d'études nordiques, Université Laval
 ² Department of Botany, University of Wisconsin

From Annual Review of Ecology, Evolution and Systematics. 2004. 35: 113-47

An ecosystem-based perspective

Caughley's (1981) 'value judgments' related to overabundance

- 1. threaten human life or livelihood
- 2. too numerous for their «own good»
- 3. depress the abundance of «important» species

4. cause ecosystem dysfunctions

Need to change our management perspective from single species/trophic level-base to ecosystem-base

Ecological impacts of deer overabundance: what's on program

Plant-herbivore interactions

- direct impact on individual plant growth strategies
- indirect impacts on plant community
- impacts on succession rate and forest structure
- ecosystem functions
- cascading effects on other animal species
- Dynamic and reversibility of deer impacts
- Research needs and management issues

Plant-herbivore interactions: an evolutionary tug-of-war

Browsing directly influence plant growth, reproduction and survival

Plant-herbivore interactions: an evolutionary tug-of-war

Through gut micro-organisms

Browsing directly influence plant growth, reproduction and survival Defense against herbivory
↓ selection
↓ intake rate
tolerance to defoliation
reallocation of resources

Plant-herbivore interactions: an evolutionary tug-of-war

Through gut micro-organisms

Browsing directly influence plant growth, reproduction and survival

Defense against herbivory
↓ selection
↓ intake rate
tolerance to defoliation
reallocation of resources

? which plants are selected, how plant and deer respond and ultimately how ecosystems functions are affected

Indirect impacts: modulation of plant-plant interactions

dominated by browse resistant / tolerant species forage on • dominant reduce • competition

Deer density

Impacts on succession rate and forest structure

by killing seedlings and reducing growth

deer ↑ succession rate by breaking up vegetation matrix

invasion of grassland by shrubs

↓ vertical structure

- biais toward med and large stems ↓ stand density
- ↑ stand rotation

Impacts on succession rate and forest structure

Alternate successional pathways and compositional shifts

Impacts on ecosystem functions: nitrogen cycling

Positive feedback mechanism
 Long lasting effects

Cascading effects on animal species

- Direct competition for resources
- Modification to the composition and structure of habitats
- Nonlinear relationships between diversity and deer density
 - $-\uparrow$ diversity at intermediate density level
 - as with plants, some wining species in insects + birds
 - small mammals usually \downarrow

Can lead to trophic cascades

Dynamic and reversibility of impacts: deer as a biological switch

Deer density

• 1 equilibrium

Deer density

- nonlinear
- threshold
- 1 equilibrium

Deer density

- threshold
- discontinuous
- nonlinear
- 2 equilibriums

Research needs and management issues

- identify thresholds density, recovery paths and time to recovery through control experiments in different forest ecosystems
- continue to improve estimation methods
 impact-based (early-warnings indices) estimators
- adopt an ecosystem-based manage. perspective
 call for better links between forest and wildlife manage.
- seek to reduce uncertainty \rightarrow adaptive manage.
 - call for better link between research and management
- precautionary approach

Acknowledgments

Centre d'études nordiques

ANTICOST

Ressources naturelles, Faune et Parcs Québec 💀 🐼

Fonds de recherche sur la nature et les technologies

Québec 👪

CHAIRE de recherche industrielle CRSNG-Produits forestiers Anticosti

Université Laval

United States Department of Agriculture

An ecosystem-based restoration framework

Fireweeds vs. grasses

Deer density (deer/km²)

Effects of white-tailed deer on Anticosti forest

Impacts on ecosystem functions: nitrogen cycling

From Bardgett, R. D., and D. A. Wardle. 2003. Ecology 84: 2258-68

Impacts on ecosystem functions: nitrogen cycling

From Bardgett, R. D., and D. A. Wardle. 2003. Ecology 84: 2258-68